

PROJECT CONCEPT NOTE

CARBON OFFSET UNIT (CoU) PROJECT

Title: 12.65 MW Biomass based Cogeneration Project at Ajbapur, Uttar Pradesh. Version 1.0 Date: 1/08/2022 First CoU Issuance Period: 2 years, 4 months Date: 10/02/2020 to 10/06/2022

Project Concept Note (PCN) CARBON OFFSET UNIT (CoU) PROJECT

BASIC INFORMATION			
Title of the project activity	12.65 MW Biomass based Cogeneration Project at Ajbapur, Uttar Pradesh.		
Scale of the project activity	Large Scale		
Completion date of the PCN	01/08/2022		
Project participants	First Climate (India) Private Limited (AGGREGATOR) DCM Shriram Ltd (Distillery Unit Ajbapur) (DEVELOPER)		
Host Party	India		
Applied methodologies and standardized baselines	CDM UNFCCC Methodology ACM0006: Electricity and heat generation from biomass (Ver. 16).		
Sectoral scopes	01- Energy industries (renewable -/ non-renewable sources)		
Estimated amount of total GHG emission reductions	To be estimated during verification [An ex-ante estimate is 2,42,164 CoUs per year]		

SECTION A. Description of project activity

A.1. Purpose and general description of Carbon offset Unit (CoU) project activity >>

The **12.65 MW Biomass based Cogeneration Project at Ajbapur, Uttar Pradesh** developed by M/s DCM Shriram Ltd (Distillery Unit Ajbapur) is located at Ajbapur Village, PO Mullapur, Distt.-Lakhimpur Kheri, Uttar Pradesh, 261505, India.

The details of the project are as follows:

Purpose of the project activity:

The proposed project activity is promoted by M/s DCM Shriram Ltd (henceforth referred as DCM) in their distillery unit located at Ajbapur Village, PO Mullapur, Distt.-Lakhimpur Kheri, Uttar Pradesh, 261505, India. The purpose of the project activity is to install one 80 TPH biomass fired boiler and 12.65 MW turbine to cater the electricity and steam demand of distillery unit of DCM. Surplus power generated from the system would be exported to grid.

The plant is expected to supply 5,69,242 MT of process steam and generate 103.224 GWh of electricity per annum both for captive consumption and grid export. In absence of this project, equivalent amount of steam would have been sourced from a fossil fuel (i.e. Coal) fired boiler and electricity would have been sourced from grid which is mainly dominated by fossil fuel. The project activity thus reduces 2,42,164 t-CO2e/annum greenhouse gas emissions (GHG) collectively by avoiding fossil fuel combustion for steam, power usages from grid and surplus green power supplied to the grid.

This project will result in avoidance of GHG emissions associated with generation of equivalent amount of energy from a coal based captive co-generation plant. The proposed project activity will use the biomass which is carbon neutral and thus will prevent depletion of non-renewable natural resources like coal.

A.2 Do no harm or Impact test of the project activity

There are social, environmental, economic and technological benefits which contribute to sustainable development.

> Social benefits:

• The project activity would help to alleviate poverty in the area as it creates employment opportunities for the local people during the construction, operation and maintenance phases and also through handling of biomass material to the project plant.

> Environmental benefits:

- The project activity will help to bridge the gap of electricity demand and supply at local as well as national level
- Employment generation for the local population which results in economic well being
- The project activity will help in conservation of fast depleting natural resources like fossil fuels, thereby contributing to the economic well-being of country as a whole.

[©] Universal CO2 Emission And Offset Registry Private Ltd

> Economic benefits:

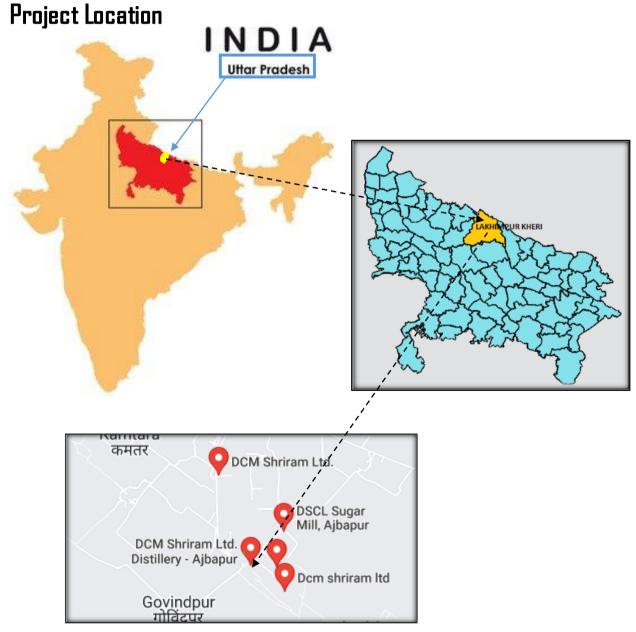
• In this project activity, the electrical and thermal energy is generated by the biomass-based cogeneration plant which replaces carbon emission intensive fossil fuels. As renewable biomass is considered to be GHG neutral fuel, combustion of biomass in this project activity does not result in net increase of GHG emissions. Besides the GHG emission reduction, the project activity also reduces emission of SOx, NOx, etc. associated with the combustion of fossil fuels.

> Technological well-being:

- The technology facilitating use of biomass material for cogeneration is environmentally safe.
- The success of the project will help in diffusion of knowledge about renewable energy technology to other power producers and will also promote the generation of green power in the region.

Sustainable Development	Project-level SDGs	SDG Impact
Goals Targeted		Contribution of Project-level Actions to SDG Targets
SDG 13.	2,42,164 tCO2/annum Emission reductions achieved per year.	 Emission reductions achieved per year by reduction of emission of GHGs by stopping combustion of coal and replacing fuel with bagasse. The company procure biomass from nearby areas which is a waste hence also utilises the waste as a fuel. Distance of round trip transportation is less than 200 km, the carbon emission due to transportation of biomass get negligible. Bagasse which is waste for sugar industry, if the waste was not properly managed and residue would have been dumped then it would generate bad odour, methane and other GHGs. The company generates its own electricity for its process and not from the national grid which would have otherwise generated electricity from the emission of fossil fuel mostly.
SDG 8.	The project activity has created at least 2	The biomass power plant contributes directly to achieve the SDG target, because the project

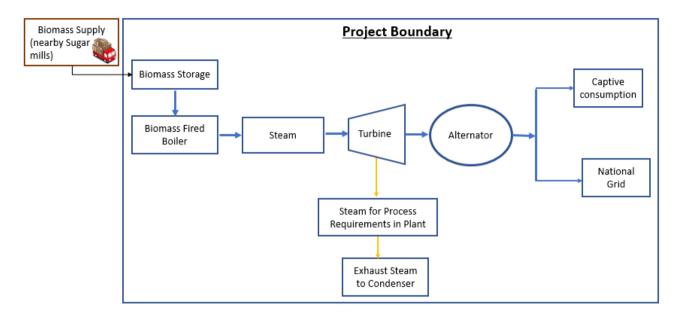
Target Fulfillment of United Nations Sustainable Development Goals (SDG)


8 ECONOMIC RROWTH 2010 Decent Work and Economic Growth sustainable economic growth, employment and decent work for all	permanent jobs in the renewable power sector i.e., local employment generation.	activity creates jobs in the renewable energy sector, which diversify and upgrades the commonly used technology in the energy sector of India.
Goal 7. 7 deformable and clean Energy	SDG target 7.2 "By 2030, Increase substantially the share of renewable energy in the global energy mix" Indicator 7.2.1 Renewable energy share in the total final energy consumption	The biomass project contributes directly to achieve the SDG target, because the project activity delivers renewable energy, which would otherwise generate by fossil fuel dominated grid connect power plants. Contribute renewable energy share in total grid energy consumption

A.3. Location of project activity >>

Country: INDIA District: Lakhimpur Kheri Village: Ajbapur Village State: Uttar Pradesh Code: 261505

The project site is well connected by district and village roads to the nearest town. The geographic co-ordinates of the project location are: Latitude: $27^{\circ}46'35.40"$ to $27^{\circ}46'51.84"$ N Longitude: $80^{\circ}12'01.86"$ To $80^{\circ}12'16.13"$ E


The representative location map is included below:

© Universal CO2 Emission And Offset Registry Private Ltd

A.4. Technologies/measures >>

Process flow chart:

The project activity involves generation of renewable energy from the combustion of renewable biomass residue, to generate process steam and electricity for captive consumption and grid supply. The technology employed is biomass-based cogeneration plant, generating steam and electricity, which would lead to avoidance of GHG emission associated with the direct coal combustion for steam generation and indirect emission due to fossil fuel dominated grid electricity. Thus, the technology to be used in this project is indigenous and is environmentally safe & sound. Emission reductions will be claimed for both thermal and electricity generation from biomass.

Details of the technical concept is as below:

The distillery unit demands both electrical and thermal energy to run the process. To meet the demand, plant has installed a biomass fired co-generation system at their facility. Plant has installed one 80 TPH biomass fired boiler which can generate superheated steam at a pressure of 45 kg/cm^2 pressure and 400 $^{\circ}$ C temperature. Superheated steam directly entered to a 12.65 MW turbine. After turbine, steam is being extracted for process use at a pressure of 5.75 kg/cm².

To operate the plant, proponent could have used coal as a fuel, which is very common across the industry sector. Bagasse is considered as renewable biomass and surplus in the region of Uttar Pradesh. Owing to some operational barriers, plant has decided to operate the co-gen system with bagasse and other biomass residues to reduce the carbon emission caused by fossil fuels.

As the project is a co-gen system, conventional Rankine cycle is considered. Equipment required for the project are as follows:

- Boiler
- Turbine
- Alternator
- Boiler and Turbine Auxiliaries
- Cooling water system
- Air pollution controlling system
- BOP

Technical details of boiler, turbine and alternator are tabulated below:

Boiler:

Parameter	Unit	Details
Type of boiler	-	Biomass TG Boiler
Boiler rated capacity	TPH	80
Steam Pressure	kg/cm2	45
Steam Temperature	Deg. C	400 +/- 5
Feed water Temperature	Deg. C	150
Fuel Type		Bagasse and other
	-	biomass residue

Turbine:

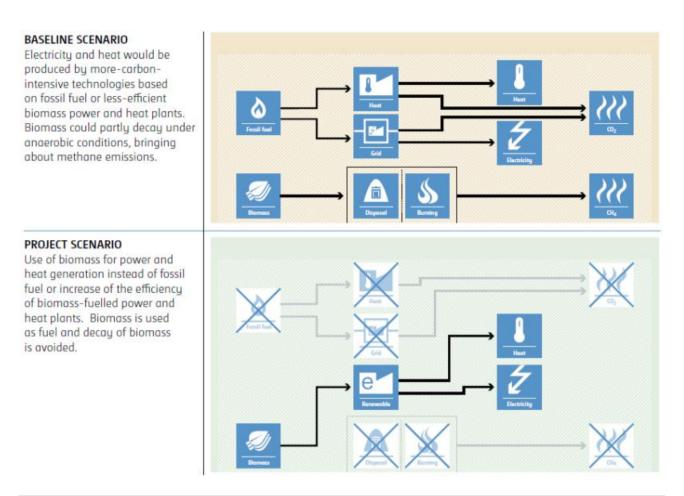
Parameter	Unit	Details
Type of turbine	-	STG Turbine
Inlet steam pressure	kg/cm2	42.03
Inlet steam temperature	Deg. C	395
Inlet steam quantity	TPH	80
Extraction pressure	kg/cm2	5.75
Extraction steam quantity	TPH	69.76

Alternator:

Parameter	Unit	Details
Type	_	4 pole synchronous
Туре	-	generator
Rated Capacity	MW	12.65
Rated power factor	-	0.8
Generation voltage	V	11000
Frequency	Hz	50

A.5. Parties and project participants >>

Party (Host)	Participants				
India	 First Climate (India) Pvt. Limited (AGGREGATOR) Contact person: Partha P Chaudhuri Mobile: +91 9831012824 Address: 903 ERGO Tower, Plot No. A1-4, Block EP & GP, Sector V, Salt Lake, Kolkata 700 091 DCM Shriram Ltd (Distillery Unit Ajbapur) (DEVELOPER) Address: Ajbapur Village, PO Mullapur, Distt Lakhimpur Kheri, Uttar Pradesh, 261505, India. 				


A.6. Baseline Emissions>>

In-house steam generation for running the process is an indispensable need of the Project owner, who intends to run a distillery.

Whatever the source of the electricity be, an in-house boiler is an absolute necessity. Also, having an in-house boiler and simultaneously purchasing electricity from outside is not an economically viable model. Therefore, in the absence of this project, the Project owner would have installed a coal-fired cogeneration boiler coupled with a turbine system.

The above statement representing the baseline scenario, it would have led to GHG emissions contributed by the burning of coal.

Flow showing baseline scenario:

A.7. Debundling>>

This 12.65 MW Biomass based Cogeneration Project is not a debundled component of a larger project activity.

SECTION B. Application of methodologies and standardized baselines

B.1. References to methodologies and standardized baselines >>

SECTORAL SCOPE - 01 Energy industries (Renewable/Non-renewable sources)

TYPE: I - Renewable Energy Projects

CATEGORY- ACM0006: Electricity and heat generation from biomass (Ver. 16)

B.2. Applicability of methodologies and standardized baselines >>

The project activity is a biomass based co-generation system set to cater the electricity and steam demand of the distillery unit of DCM. It replaced the baseline technology fossil fuel fired traditional co-generation system that used non-renewable fuel or more carbon intensive fuel sources i.e. Coal. This project will result in avoidance of GHG emissions associated with generation of equivalent amount of energy from a coal based captive co-generation plant. Moreover, the proposed project activity will also utilize the biomass which is a renewable source of energy and thus will prevent depletion of non-renewable natural resources like coal.

Here, the project activity is to install one 80 TPH biomass fired boiler and a turbo-alternator set to cater the electricity and steam demand of distillery unit of DCM.

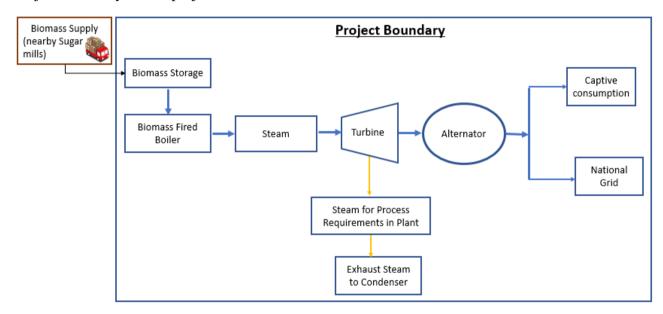
Applicability Criteria	Project Condition
The methodology is applicable under the	The project activity would use renewable
following conditions:	biomass without any chemical, physical and
(a) Biomass used by the project plant is	biological processing. Biomass would not
limited to biomass residues, biogas,	stored in the project boundary more than one
RDF2 and/or biomass from dedicated	years. Project would not use any fossil fuel for
plantations;	co-firing. Hence the criteria points (a), (b), (d)
(b) Fossil fuels may be co-fired in the	and (e) are applicable.
project plant. However, the amount of	
fossil fuels co-fired does not exceed	
80% of the total fuel fired on energy	
basis.	
(c) For projects that use biomass residues	
from a production process (e.g.	
production of sugar or wood panel	
boards), the implementation of the	
project does not result in an increase of	
the processing capacity of (the industrial	
facility generating the residues) raw	
input (e.g. sugar, rice, logs, etc.) or in	
other substantial changes (e.g. product	
change) in this process;	
(d) The biomass used by the project plant is	
not stored for more than one year;	
(e) The biomass used by the project plant is	
not processed chemically or biologically	
(e.g. through esterification,	

fermentation, hydrolysis, pyrolysis, bio-	
or chemical-degradation, etc.) prior to	
combustion. Drying and mechanical	
processing, such as shredding and	
pelletisation, are allowed.	
In the case of fuel switch project activities, the	The project is a new greenfield project and
use of biomass or the increase in the use of	hence this criteria is not applicable.
biomass as compared to the baseline scenario is	
technically not possible at the project site	
(a) The retrofit or replacement of existing	
heat generators/boilers; or	
(b) The installation of new heat	
generators/boilers; or	
(c) A new dedicated supply chain of biomass	
established for the purpose of the project	
(e.g. collecting and cleaning	
contaminated new sources of biomass	
residues that could otherwise not be used	
for energy purposes); or	
Equipment for preparation and feeding of	
biomass.	
If biogas is used for power and heat generation,	There is no production of biogas and hence this
the biogas must be generated by anaerobic	criteria is not applicable.
digestion of wastewater, and:	
(a) If the wastewater generation source is registered as a CDM project activity, the	
details of the wastewater project shall be	
included in the PDD, and emission	
reductions from biogas energy	
generation are claimed using this	
methodology;	
If the wastewater source is not a CDM project,	
the amount of biogas does not exceed 50% of the	
total fuel fired on energy basis.	
In the case biomass from dedicated plantations is	Dedicated plantation is not applicable for the
used, the "TOOL16: Project and leakage	project and hence the given clause is not
emissions from biomass" shall apply to	applicable to the Project so concerned.
determine the relevant project and leakage	
emissions from cultivation of biomass and from	
the utilization of biomass residues.	

B.3. Applicability of double counting emission reductions >>

There is no double accounting of emission reductions in the project activity due to the following reasons:

- Project is uniquely identifiable based on its location coordinates,
- Project has dedicated commissioning certificate and connection point,


The Monitoring Report has the details of the end user's name and location i.e DCM Shriram Ltd (Distillery Unit Ajbapur) located at Ajbapur Village, PO Mullapur, Distt.-Lakhimpur Kheri, Uttar Pradesh, 261505, India.

B.4. Project boundary, sources and greenhouse gases (GHGs)>>

In line with the methodology, the project boundary encompasses the industrial facility of DCM, equipment installed for the operation of cogeneration plant, the biomass storage facility, the facility (distillery unit) consuming the energy (electrical and thermal) generated by the project activity plant and its supply to the grid;

Plant would use the bagasse and other biomass residue as a renewable fuel for the boiler. Quantity of the biomass supplied from nearby sugar mills would be used as fuel for project boiler.

Project boundary of this project is illustrated below:

The table below provides an overview of the emission sources included or excluded from the project boundary for determination of baseline and project emissions.

	Source	Gas	Included	Justification/Explanation
	Electricity and heat	CO2	Yes	Main emission source
Electrici generatio		CH4	No	Excluded for simplification. This is conservative
	generation	N2O	No	Excluded for simplification. This is conservative
Bas	Uncontrolled burning or decay of surplus biomass residues	CO2	No	It is assumed that CO2 emissions from surplus biomass residues do not lead to changes of carbon pools in the LULUCF sector

	Source	Gas	Included	Justification/Explanation
		CH4	No	Excluded for simplification. This emission source is assumed to be very small
		N2O	No	Excluded for simplification.
		CO2	No	Project Activity does not use fossil fuel.
	On-site fossil fuel consumption	CH4	No	Project Activity does not use fossil fuel.
		N2O	No	Project Activity does not use fossil fuel.
		CO2	No	Biomass is not transported to the outside of the plant premises.
	Off-site transportation of biomass	CH4	No	Biomass is not transported to the outside of the plant premises.
		N2O	No	Biomass is not transported to the outside of the plant premises.
Project activity	Combustion of	CO2	No	It is assumed that CO2 emissions from surplus biomass do not lead to changes of carbon pools in the LULUCF sector
Projec	biomass for electricity and heat	CH4	No	Not applicable, as not considered in baseline scenario either.
		N2O	No	Excluded for simplification. This emission source is assumed to be small
		CO2	No	Biomass does not undergo any treatment. So no wastewater is generated.
	Wastewater from the treatment of biomass	CH4	No	Biomass does not undergo any treatment. So no wastewater is generated.
		N2O	No	Biomass does not undergo any treatment. So no wastewater is generated.
	Cultivation of land to produce biomass feedstock	CO2	No	Not applicable, as the biomass is not sourced from dedicated plantations.

Source	Gas	Included	Justification/Explanation
	CH4	No	Not applicable, as the biomass is not sourced from dedicated plantations.
	N2O	No	Not applicable, as the biomass is not sourced from dedicated plantations.

B.5. Establishment and description of baseline scenario >>

According to paragraph 23 under sub-section 5.3.1 ("Identification of alternative scenarios") of the ACM0006 CDM Methodology, the alternative baseline scenarios shall specify the following:

"The alternative scenarios shall specify:

(a) How electric power would be generated in the absence of the CDM project activity (P scenarios); (b) How heat would be generated in the absence of the CDM project activity (H scenarios);

(c) If the CDM project activity generates mechanical power through steam turbine(s): how the mechanical power would be generated in the absence of the CDM project activity (M scenarios);

(d) If the CDM project activity uses biomass residues, what would happen to the biomass residues in the absence of the CDM project activity (B scenarios);

(e) If the CDM project activity uses biomass cultivated in dedicated plantations, what the land use would be in the absence of the CDM project activity (L scenarios); and

(f) If the CDM project activity uses biogas from on-site wastewater, what would happen to the biogas in the absence of the CDM project activity (BG scenarios)."

Baseline scenario	Description (of P Scenarios)	Justification for choosing or
for power		not choosing the alternative,
generation		while comparing it with the
(ACM0006, V.16.0)		Project activity
P1	The proposed project activity not	This is a possible power
	undertaken as a UCR project activity;	generation baseline alternative
		to the UCR Project activity.
P2	The continuation of power generation in	The Project being a greenfield
	existing power plants at the project site.	one, such scopes do not exist
	The existing plants would operate at the	hence this alternative is not
	same conditions (e.g. installed	applicable a baseline
	capacities, average load factors, or	alternative.
	average energy efficiencies, fuel mixes,	
	and equipment configuration) as those	
	observed in the most recent three years	
	prior to the starting date of the UCR	
	project activity;	
© Universal CO2 Emission And	Offset Registry Private Ltd	

Therefore for power generation, the realistic and credible alternatives may include:

P3	The continuation of power generation in	This is a greenfield Project and
	existing power plants at the project site.	no other power generation
	The existing plants would operate with	facilities are present within the
	different conditions from those observed	project site of the Project
	in the most recent three years prior to the	activity. Hence, this cannot be a
	starting date of the project UCR activity;	possible alternative scenario.
P4	The retrofitting of existing power plants	The Project being a greenfield
	at the project site. The retrofitting may or	one, such scopes do not exist
	may not include a change in fuel mix;	hence this alternative is not
		applicable a baseline
		alternative.
P5	The installation of new power plants at	This is a possible alternative
	the project site different from those	scenario, with respect to power
	installed under the UCR project activity;	generation.
P6	The generation of power in specific off-	The cost of transportation of
	site plants, excluding the power grid;	electricity from off-site
		generation point(s) shall be
		higher than on-site electric
		power generation system(s).
		Hence this alternative scenario
		is unattractive.
P7	The generation of power in the power	This is a possible baseline
	grid.	alternative, with respect to
		electricity generation.
J		1

Similarly, from the UCR perspective, for power generation, the realistic and credible alternatives may include:

Baselinescenarioforheat generation(ACM0006,V.16.0)	Description (of H scenarios)	Justification for choosing or not choosing the alternative, with regards to the Project activity
H1	The proposed project activity not undertaken as a UCR project activity;	This is a possible alternative scenario from the heat generation perspective.
H2	The continuation of heat generation in existing plants at the project site. The existing plants would operate at the same conditions (e.g. installed capacities, average load factors, or average energy efficiencies, fuel mixes, and equipment configuration) as those observed in the most	The project is a greenfield establishment hence such possibilities do not exist. So this scenario is not applicable.

activity;	
The continuation of heat generation in	The project is a greenfield
existing plants at the project site. The	establishment hence such
existing plants would operate with different	possibilities do not exist. So this
conditions from those observed in the most	scenario is not applicable.
recent three years prior to the UCR project	
activity;	
The retrofitting of existing plants at the	The project is a greenfield
project site. The retrofitting may or may not	establishment hence such
include a change in fuel mix;	possibilities do not exist. So this
	scenario is not applicable.
The installation of new plants at the project	This is a possible alternative
site different from those installed under the	scenario, with respect to heat
UCR project activity;	generation.
The generation of heat in specific off-site	Steam transportation from
plants;	outside the plant premises to the
	process unit within the plant shall
	be more expensive than in-house
	steam generation and
	transportation. Hence, this
	alternative proposition is not
	attractive.
The use of heat from district heating	Such facilities do not exist within
	the district of location of the
	Project.
	 existing plants at the project site. The existing plants would operate with different conditions from those observed in the most recent three years prior to the UCR project activity; The retrofitting of existing plants at the project site. The retrofitting may or may not include a change in fuel mix; The installation of new plants at the project site different from those installed under the UCR project activity; The generation of heat in specific off-site plants;

Paragraph 26 of the same methodology document includes the M scenarios as in:

"The alternative scenarios for mechanical power should include, but not be limited to, inter alia:

(a) M1: The proposed project activity not undertaken as a CDM project activity;

(b) M2: If applicable, the continuation of mechanical power generation from the same steam turbines in existing plants at the project site;

(c) M3: The installation of new steam turbines at the project site

(*d*) *M4: If applicable, the continuation of mechanical power generation from electrical motors in existing plants at the project site;*

(e) M5: The installation of new electrical motors at the project site."

However, as the project activity does not employ the use of mechanical power from steam turbine(s), hence none of the M scenarios is applicable to our Project. Therefore, none of the M scenarios can be an alternative scenario.

Also, paragraph 29 of ACM0006 Version 16.0 states:

"When using biomass residues, the alternative scenarios of the biomass residues in absence of the project activity shall be determined following TOOL16."

As per CDM "Methodological TOOL 16: Project and leakage emissions from biomass", the following points with regards to project emission can be stated with respect to our Project:

Sr. No.	Project Emission	Justification
1	<i>"Project emissions resulting from cultivation of biomass in a dedicated</i>	Not Applicable
	plantation in year y ($PE_{BC,y}$)"	As dedicated plantations are not exploited by
		the Project activity hence this entire section
		does not apply to the Project.
		So, $PE_{BC,y} = 0$
2	"Project emissions resulting from	Negligible
	transportation of biomass in year y	
	(<i>PE</i> _{BT,y}) and Project emissions resulting	As biomass is sourced from nearby sugar
	from transportation of biomass	mills, the emissions occurring due to
	<i>residues in year y (PE_{BRT,y})"</i>	transportation of bagasse from these very
		close locations to the site of Project is
		considered to be zero for all purposes of
		calculation.
		Hence, $PE_{BT,y} = 0$ and $PE_{BRT,y} = 0$
3	"Project emissions resulting from	Not Applicable
	processing of biomass in year y ($PE_{BP,y}$)	
	and Project emissions resulting from	As no biomass processing is required or
	processing of biomass residues in year	carried out, hence this section is not
	$y(PE_{BRP,y})''$	applicable to the Project.
		So, $PE_{BP,y} = 0$ and $PE_{BRP,y} = 0$

Hence, for all practical and calculation purposes, project emission is considered to be zero.

Using the same tool, the leakage emissions can be accounted as:

Sr.	Leakage Emission	Justification
No.		
1	<i>"Leakage due to shift of pre- project activities resulting</i>	Not Applicable
	from cultivation of biomass in a dedicated plantation in year y $(LE_{BC,y})$ "	The project does not involve the use of resources from dedicated plantations. Hence, this clause is not applicable. Therefore, $LE_{BC,y} = 0$
2	"Leakage due to diversion of	Not possible

	biomass residues from other	
	applications in year y $(LE_{BR,Div,y})$ "	Uttar Pradesh being the largest sugar producing state of India has tremendous resources of bagasse. Hence, there is no dearth of bagasse within the state (on sugar seasons). More than enough bagasse is available for channelizing it into different purposes during the season.
		Also, as per the audit report of the Comptroller and Auditor General of India, Uttar Pradesh has a biomass power potential of 1477.9 MW (as assessed by MNRE) and 3757 MW (as assessed by SNAs); while the installed capacity scenario is of 776.5 MW as per MNRE and 1142 MW as per SNA. From the above data it is evident that even after commissioning the proposed plant, biomass would be surplus in that region.
		Hence, the surplus biomass availability is unquestionable and leakage due to diversion is neglected. So, LE _{BR,Div,y} is considered as zero.
3	"Leakage due to the transportation of biomass residues outside of the project boundary in year y (LE _{BRT,y})"	Not applicable LEBRT,y can be safely considered to be zero.
4	"Leakage due to processing of biomass residues outside the project boundary in year y (LE _{BRP,y})"	Not applicable Biomass to be used within the project boundary shall not require any processing and hence no leakage can occur due to processing of biomass with respect to the Project activity.
		Therefore, $LE_{BRP,y} = 0$

Thus it is seen that using CDM Methodological TOOL 16, the leakage emissions due to the project activity in is zero.

And because the project emissions are also considered to be zero for all practical purposes using the same TOOL 16, the total PE + LE from the project = 0.

Paragraph 30 of the ACM0006 Version 16.0 Methodology document refers back to TOOL 16 as it mentions:

"In addition to the alternative scenarios (B scenarios) included in TOOL16, the project participants shall include scenario B5: (a) The biomass residues are used for power or heat generation at the project site in new and/or existing plants."

В	Description	Justification
Scenario		
B1	"The biomass residues are dumped or left to	This is the most probable fate of the
	decay mainly under aerobic conditions. This	biomass in absence of the project
	applies, for example, to dumping and decay	activity, where it would have been left
	of biomass residues on fields;"	unattended in the open- left to decay and
		rot at a natural pace under ambient
		environmental conditions.
		Therefore, this is the most likely
		alterative of the biomass so used in the
		project.
B2	"The biomass residues are dumped or left to	This cannot be a possible alternative, as
	decay under clearly anaerobic conditions.	the biomass, in absence of the project
	This applies, for example, to landfills which	activity, is dumped in ambient air in the
	are deeper than five meters. This does not	open on level land.
	apply to biomass residues that are stock-	Hence, this alternative is not generally
	piled or left to decay on fields;"	possible.
B3	"The biomass residues are burnt in an	Bagasse is not generally burnt in an
	uncontrolled manner without utilizing it for	uncontrolled manner; therefore, this
	energy purposes;"	alternative is not applicable.
B4	"The biomass residues are used for energy	This could be a likely alternative for
	or non-energy applications, or the primary	some part of the bagasse generated.
	source of the biomass residues and/or their	
	fate cannot be clearly identified."	
B5	"The biomass residues are used for power	The Project is a greenfield project and all
	or heat generation at the project site in new	energy producing establishments within
	and/or existing plants"	the Project site are new. Hence, this
		scenario is representative of the Project
		activity rather than the baseline
		alternative.

Therefore, with reference to the B scenarios of TOOL 16 and adding B5 to it, the most possible fate of the biomass in absence of the project activity shall be:

As this Project does not involve the use of biogas as a fuel source, hence none of the BG scenarios of ACM0006 methodology are applicable.

Hence to summarize the baseline scenario, the most probable alternatives are **P1**, **P5** and **P7** with respect to power generation and H1 and H5 with respect to heat generation. **B1** is the most suitable biomass baseline scenario, noting the surplus biomass availability.

In absence of financial support to the project from carbon credits so generated, the next best alternative for the Project owner is to install and commission a captive coal-fired cogeneration system of the same capacity and meet the energy requirements of the plant using GHG-emitting

coal as the fuel source.

Therefore, an in-house coal-fired captive cogeneration system being the baseline of the project, the key parameters to calculate the baseline emissions are:

The key parameters for baseline emission calculation are presented below in a tabular format: -

Parameter	Unit	Value
Steam to turbine	Tph	80
Extraction steam	Tph	69.76
Electricity generation capacity of project	MW	12.65
Coal emission factor (EF _{FF,CO2}) (mixed power plant)	tCO ₂ /TJ	96.1
Operating days	Days	340
Operating hours	Hours	24
Efficiency of boiler using coal	%	80 %
Pressure of steam at Boiler outlet	kg/cm2	45
Temperature of steam at Boiler outlet	Deg. C	400
Pressure of steam at Turbine Extraction	kg/cm2	5.75
Temperature of feed water inlet to boiler	Deg. C	150

As per ACM0006 Version 16.0, the formula to calculate emission reductions from a project is given in paragraph 34 as:

"Emission reductions are calculated as follows:

$ER_y = BE_y - PE_y - LE_y$

Where:

 $ER_y = Emissions \ reductions \ in \ year \ y \ (t \ CO_2)$

 $BE_{y} = Baseline \ emissions \ in \ year \ y \ (t \ CO_{2})$

 $PE_{y} = Project \ emissions \ in \ year \ y \ (t \ CO_{2})$

 $LE_{y} = Leakage \ emissions \ in \ year \ y \ (t \ CO_{2})$ "

The PEy and LEy due to the project activity is zero each. So in this case,

$ER_y = BE_y$

Hence, for the given UCR project, the number of emission reduction units attained due to the commissioning and operation of the Project activity is exactly equal the units of GHG emission so avoided by not choosing to implement the baseline scenario.

The choice for CDM Methodology ACM0006 is simple- the project is a large-scale project where electricity is being co-generated with thermal energy (in the form of steam) from biomass. The guidance, the processes, the steps and the tools required to estimate carbon credits generated from *"Electricity and heat generation from biomass"* projects are mentioned in details within the given methodology.

The scope of the methodology so mentioned in Section B.2 of this PCN demonstrates as to why this Project qualifies to be claimed carbon credits against, in line with ACM0006 CDM Methodology.

As per paragraph 37 of methodology,

"Baseline emissions are calculated as follows:

$BE_{y} = EL_{BL,GR,y} \times EF_{EG,GR,y} + \sum FF_{BL,HG,y,f} \times EF_{FF,y,f} + EL_{BL,FF/GR,y} \times min(EF_{EG,GR,y}, EF_{EG,FF,y}) + BE_{BR,y}$

Where:

 $BE_y = Baseline \ emissions \ in \ year \ y \ (t \ CO_2)$ $EL_{BL,,} = Baseline \ electricity \ sourced \ from \ the \ grid \ in \ year \ y \ (MWh)$ $FE_{G,,} = Grid \ emission \ factor \ in \ year \ y \ (t \ CO_2/MWh)$ $FF_{BL,,f} = Baseline \ fossil \ fuel \ demand \ for \ process \ heat \ in \ year \ y \ (GJ)$ $EF_{FF,,} = CO_2 \ emission \ factor \ for \ fossil \ fuel \ type \ f \ in \ year \ y \ (t \ CO_2/GJ)$ $EL_{BL/GR,y} = Baseline \ uncertain \ electricity \ generation \ in \ the \ grid \ or \ on-site \ or \ off-site \ power-only \ units \ in \ year \ y \ (MWh)$ $EF_{EG,,} = CO_2 \ emission \ factor \ for \ electricity \ generation \ at \ the \ project \ site \ or \ off-site \ plants \ in \ the \ baseline \ in \ year \ y \ (t \ CO_2/MWh)$ $BE_{BR,} = Baseline \ emissions \ due \ to \ disposal \ of \ biomass \ residues \ in \ year \ y \ (t \ CO_2e)$ $f = Fossil \ fuel \ type"$

In absence of the project activity, electricity would have been sourced from the grid. Hence, $EL_{BL_{n}}$ would be the sum of captive consumption of electricity and electricity supplied to the grid.

Baseline uncertain electricity generation in the grid or on-site or off-site power-only units in year y (MWh) is not applicable for the project activity and the project activity does not account the emission due to disposal of biomass residue. Hence, the baseline emissions for the project activity would be calculated as:

$BE_{y} = EL_{BL,GR,y} \times EF_{EG,GR,y} + \sum FF_{BL,y,f} \times EF_{FF,y,f}$

As per the Steps of calculation elucidated in ACM0006 Methodology:

"Step 1: Determine the total baseline process heat generation ($HC_{BL,y}$), electricity generation and capacity constraints, and efficiencies

Step 1.1: Determine the total baseline process heat generation

The amount of process heat that would be generated in the baseline in year y $(HC_{BL,y})$ is determined based on continuously monitored data of process heat generated in the project scenario. The process heat should be calculated net of any parasitic heat used for drying of biomass. This methodology assumes for the sake of simplicity that the steam consumed in the baseline scenario would be the same quality as the steam used in the proposed CDM project activity and

transported through one steam header in both scenarios

Step 1.2: Determine the baseline capacity of electricity generation The total capacity of electricity generation available in the baseline is calculated as follows: $CAP_{EG,total,y} = LOC_y$

$$\times \left[\sum_{i} (CAP_{EG,CG,i} \times LFC_{EG,CG,i}) + \sum_{j} (CAP_{EG,PO,j} \times LFC_{EG,PO,j}) \right]$$

Where:

CAP _{EG,total,y}	=	Baseline electricity generation capacity in on-site and off-site plants in year y (MWh)
$CAP_{EG,CG,i}$	=	Baseline electricity generation capacity of cogeneration-type heat engine i (MW)
$CAP_{EG,PO,j}$	=	Baseline electricity generation capacity of power-only-type heat engine j (MW)
LFC _{EG,CG,i}	=	Baseline load factor of cogeneration-type heat engine i (ratio)
LFC _{EG,PO,j}	=	Baseline load factor of power-only-type heat engine j (ratio)
LOC _y	=	<i>Operation of the industrial facility using the process heat in year y (hour)</i>
i	=	Cogeneration-type heat engine in the baseline scenario
j	=	Power-only-type heat engine in the baseline scenario

Step 1.3: Determine the efficiencies of heat generators, and efficiencies and heat-to-power ratio of heat engines"

As per para 42, efficiency of the heat engine would be calculated as per TOOL09.

"Case 2: For heat engines without a minimum three-year operational history prior to the CDM project activity the heat-to-power ratio should be determined as per the design conditions of the plant, for the configuration identified as baseline scenario"

As per para 38 of the methodology, Step 2 is "*Determine the baseline electricity generation in the grid and emission factors*". Emission factor is calculated as per the Tool 07.

and Step 3 is "*Determine the baseline biomass-based heat and power generation*". As base line does not involve the biomass based heat and power generation system, this step is not applicable.

Step 4 is "Determine the baseline demand for fossil fuels to meet the balance of process heat and the corresponding electricity generation", and

"Step 4.1: Determine the baseline fossil fuel-based cogeneration of process heat and electricity and the remaining process heat demand" is seen mentioned in the methodology.

As per para 82, "When the amount of biomass residues available is not sufficient to generate the heat required to meet the process heat demand, it is assumed that the balance of process heat is met using fossil fuels, resulting in related fossil fuel baseline emissions. Where fossil fuel based cogeneration, capacity is available it is assumed that the remaining process heat demand will first be supplied by cogeneration and then by direct use of heat supplied by heat generators."

As baseline project activity does not involve biomass based cogeneration. Hence, this step is not applicable.

Step 4.2 states "Determine the baseline heat generation to meet the fossil-based cogeneration of heat and power and the heat to meet the balance of process heat", under which it is mentioned:

"Estimate the total amount of fossil fuels required to generate the heat required for the cogeneration in Step 4.1 and the balance of process heat as follows:

$$\sum_{h} HG_{BL,FF,y,h} = HG_{BL,FF,DHE,y} + HG_{BL,FF,CG,y}$$
$$FF_{BL,HG,y,f} = \sum_{h} \left(\frac{HG_{BL,FF,y,h}}{\eta_{BL,HG,FF,h}}\right)$$

Where:

$FF_{BL,HG,y,f}$	= Baseline fossil fuel demand for process heat in year y (GJ)
$HG_{BL,FF,y,h}$	= Baseline fossil-based heat generation in heat generator h in year y (GJ)
$\eta_{BL,HG,FF,h}$	 Baseline fossil-based heat generation efficiency of heat generator h (ratio)¹
HG _{BL,FF,DHE,y}	 Baseline fossil-based heat used to meet baseline process heat demand via direct heat extraction in year y (GJ)
$HG_{BL,FF,CG,y}$	= Baseline fossil-based heat cogeneration in year y (GJ)

The total heat generation required from fossil fuels ($HG_{BL,FF,y}$) shall be allocated to the different heat generators ($HG_{BL,FF,y,h}$), so as to maximize the heat generation efficiency, subject to the difference in heat content in the different heat carriers, up to the level required for meeting the balance of process heat demand."

As direct steam extraction not applicable for the project case, $HG_{BL,FF,DHE,y}$ would be zero. Hence, $HG_{BL,,h} = HG_{BL,FF,CG}$.

Step 5 states "Determine the baseline emissions due to uncontrolled burning or decay of biomass residues"

This step is not applicable for the project activity as the project activity would not account the

¹ In case of connection to a district heating system or off-site heat supply from which the individual sources cannot be identified, the district heating system shall be considered the most efficient heat source. The capacity of the district heating system shall be considered unlimited unless it can be justified (based on historical consumption data or heat purchase contracts) that the amount of heat to be consumed from/ or delivered to the district heat system was limited. The emission factor of the district heating system shall be considered 0.

[©] Universal CO2 Emission And Offset Registry Private Ltd

emission due to the decay of biomass.

Thus, Baseline emission of the project activity would be:

$BE_{y} = EL_{BL,GR,y} \times EF_{EG,GR,y} + \sum_{f} FF_{BL,HG,y,f} \times EF_{FF,y,f} + EL_{BL,FF/GR,y} \times min(EF_{EG,GR,y}, EF_{EG,FF,y}) + BE_{BR,y}$

Where:

 $BE_y = Baseline \ emissions \ in \ year \ y \ (t \ CO_2)$ $EL_{BL,,} = Baseline \ electricity \ sourced \ from \ the \ grid \ in \ year \ y \ (MWh)$ $FE_{G_{,,}} = Grid \ emission \ factor \ in \ year \ y \ (t \ CO_2/MWh)$ $FF_{BL,,f} = Baseline \ fossil \ fuel \ demand \ for \ process \ heat \ in \ year \ y \ (GJ)$ $EF_{FF,,} = CO_2 \ emission \ factor \ for \ fossil \ fuel \ type \ f \ in \ year \ y \ (t \ CO_2/GJ)$ $EL_{BL,/GR,y} = Baseline \ uncertain \ electricity \ generation \ in \ the \ grid \ or \ on-site \ or \ off-site \ power-only \ units \ in \ year \ y \ (MWh)$ $EF_{EG,,} = CO_2 \ emission \ factor \ for \ electricity \ generation \ at \ the \ project \ site \ or \ off-site \ plants \ in \ the \ baseline \ in \ year \ y \ (t \ CO_2/MWh)$ $EF_{EG,,} = CO_2 \ emission \ factor \ for \ electricity \ generation \ at \ the \ project \ site \ or \ off-site \ plants \ in \ the \ baseline \ in \ year \ y \ (t \ CO_2/MWh)$ $BE_{BR,} = Baseline \ emissions \ due \ to \ disposal \ of \ biomass \ residues \ in \ year \ y \ (t \ CO_2e)$ $f = Fossil \ fuel \ type$

Baseline uncertain electricity generation in the grid or on-site or off-site power-only units in year y (MWh) is not applicable for the project activity and the project activity does not account the emission due to disposal of biomass residue. Hence, the baseline emissions for the project activity would be calculated as:

 $BE_{y} = EL_{BL,GR,y} \times EF_{EG,GR,y} + \sum FF_{BL,y,f} \times EF_{FF,y,f}$

B.6. Prior History>>

The project activity has not applied to any other GHG program for generation or issuance of carbon offsets or credits.

Hence project will not cause double accounting of carbon credits (i.e. COUs).

B.7. Changes to start date of crediting period >>

The crediting period under UCR has been considered from the date of commissioning of the project.

B.8. Permanent changes from PCN monitoring plan, applied methodology or applied standardized baseline >>

There are no permanent changes from registered PCN monitoring plan and applied methodology.

B.9. Monitoring period number and duration>>

First Issuance Period: 2 years, 4 months -10/02/2020 to 10/06/2022

B.8. Monitoring plan>>

Following parameters being used in emission reductions determination (Fixed Ex-Ante)

Data / Parameter:	EF _{BL,CO2,FF}
Methodology reference	ACM0006
Data unit	t-CO ₂ /GJ
Description	CO_2 emission factor of the fossil fuel type that would be used for power generation at the project site in the baseline (t CO_2/GJ)
Measured/calculated/default	Default
Data source	IPCC database
Value(s) of monitored	0.0961
parameter	
Measurement/ Monitoring equipment (if applicable)	Not Applicable
Measuring/reading/	-
recording frequency (if	
applicable)	
Calculation method (if	-
applicable)	
QA/QC	Data taken from IPCC database. Hence, no QA/QC required.
procedures	
Purpose of data	To calculate baseline emission
Additional comments	Value is fixed ex-ante

Data / Parameter:	Not re
	η _{BL,FF}
Methodology reference	ACM0006
Data unit	%
Description	Efficiency of the fossil fuel boiler at the project site in the baseline
Measured/calculated/default	Default
Data source	CDM methodological Tool 09
Value(s) of monitored	90
parameter	
Measurement/ Monitoring	Not Applicable
equipment (if applicable)	
Measuring/reading/	-
recording frequency (if	
applicable)	
Calculation method (if	-
applicable)	
QA/QC	Data taken from CDM methodological Tool. Hence, no QA/QC
procedures	required.
Purpose of data	To calculate baseline emission
Additional comments	Value is fixed ex-ante

Data / Parameter:	NCV _{BR,n,x}
Methodology reference	ACM0006
Data unit	KCal/kg
Description	Net calorific value of biomass
Measured/calculated/default	Measured
Data source	Test Report
Value(s) of monitored	2131 (Bagasse) and 1719 (Slop)
parameter	
Measurement/ Monitoring	Not Applicable
equipment (if applicable)	
Measuring/reading/	-
recording frequency (if	
applicable)	
Calculation method (if	-
applicable)	
QA/QC	Data taken from biomass suppliers. Hence, no QA/QC required.
procedures	
Purpose of data	To calculate baseline emission
Additional comments	Value is fixed ex-ante

Data / Parameter:	NCV _{FF,f,x}
Methodology reference	ACM0006
Data unit	GJ/tonne
Description	Net calorific value of fossil fuel type f in year x
Measured/calculated/default	Measured
Data source	Supplier's quotation
Value(s) of monitored	23.03
parameter	
Measurement/ Monitoring	Not Applicable
equipment (if applicable)	
Measuring/reading/	-
recording frequency (if	
applicable)	
Calculation method (if	-
applicable)	
QA/QC	Data taken from suppliers. Hence, no QA/QC required.
procedures	
Purpose of data	To calculate baseline emission
Additional comments	Value is fixed ex-ante

Data/Parameter	EF _{Gridy}
Data unit	tCO2 /MWh
Description	Combined margin grid emission factor

Source of data	CEA database
Value applied	0.9088
Measurement methods and procedures	N/A
Monitoring frequency	Ex-ante fixed parameter
Purpose of Data	For the calculation of Emission Factor of the grid
Additional Comment	-

Data and parameters that require to be monitored at the Project location from time to time is tabulated below:

Data / Parameter:	HG _{BL,y}
Methodology	CDM Large-scale Consolidated Methodology ACM0006
reference	
Data unit	TJ/Year
Description	Baseline process heat generation in year y (TJ)
Measured/calculated /default	Measured
Data source	Onsite measurement
Value(s) of	1389
monitored parameter	
Measurement/	Steam Flow Meter, Pressure Gauge and Temperature Gauge.
Monitoring	
equipment	
Measuring/reading/	Monitoring procedure: Continuously with steam flow meter
recording frequency	Data Type: measured
	Recording frequency: Daily Average
	Archiving method: Electronic
Calculation method	Calculation would be done by multiplying the generated steam quantity
(if applicable)	with its enthalpy.
QA/QC	Steam flow meter shall be certified by third party as per national or
procedures	international standards and recalibrated at appropriate intervals
	according to manufacturer specifications, or at least once in three years;
Purpose of data	To cross check emission reduction
Additional	Data would be archiving electronically up to 2 years from the end of
comments	crediting period.

Data / Parameter:	EL _{MWhy}
Data unit:	MWh/year
Description:	Quantity of net electricity supplied to the grid as a result of the
	implementation of the project activity in year y (MWh)
Source of data:	Monthly Joint Meter Readings (JMRs)
Measurement	Data Type: Measured
procedures (if any):	Monitoring equipment: ABT Energy Meters Frequency: Continuous

	 monitoring and Monthly recording from Energy Meters, Archiving Policy: Paper & Electronic Calibration frequency: 5 years (as per CEA provision) Generally, the calculation is done by the Authority/Dis-com and the project proponent has no control over the authority for the calculation. Therefore, based on the joint meter reading certificates/credit notes, the project shall raise the invoice for monthly payments.
Manitarina	EL = E(export) - E(import)
Monitoring frequency:	Monthly
Value applied:	To be applied as per actual data
QA/QC procedures:	Calibration of the Main meters will be carried out once in five (5) years as per National Standards (as per the provision of CEA, India) and faulty meters will be duly replaced immediately as per the provision of power purchase agreement.
	Cross Checking: Quantity of net electricity supplied to the grid will be cross checked from the invoices raised by the project participant to the grid.
Purpose of date:	The Data/Parameter is required to calculate the baseline emission.
Any comment:	All the data will be archived till a period of two years from the end of the crediting period.

Data / Parameter:	EL _{PG,Gross,y}
Methodology	CDM Large-scale Consolidated Methodology ACM0006
reference	
Data unit	MWh
Description	Gross quantity of electricity generated in all power plants in year y (MWh)
Measured/calculated	Measured
/default	
Data source	Plant Record
Value(s) of	103,224
monitored parameter	
Measurement/	
Monitoring	Three Phase Energy Meter
equipment	
Measuring/reading/	Monitoring procedure: Continuously from Installed energy meter.
recording frequency	Data Type: Measured
	Recording frequency: Daily cumulative
	Archiving method: Electronic

Calculation method (if applicable)	Calculated by subtracting previous reading from present reading of energy meter reading.
	Gross Generation = Present Reading – Previous Reading
QA/QC	Energy meter shall be certified by third party as per national or
procedures	international standards and recalibrated at appropriate intervals
	according to manufacturer specifications, or at least once in 5 years;
Purpose of data	To crosscheck emission reduction
Additional	Data would be archiving electronically up to 2 years from the end of
comments	crediting period.

Data / Parameter:	EL _{PJ,aux,y}
Methodology	CDM Large-scale Consolidated Methodology ACM0006
reference	
Data unit	MWh
Description	Total auxiliary electricity consumption required for the operation of the power plants at the project site in year y (MWh)
Measured/calculated /default	Measured
Data source	Onsite Measurement
Value(s) of monitored parameter	Would be provided during verification
Measurement/ Monitoring equipment	Three Phase Energy Meter
Measuring/reading/	Monitoring procedure: Daily from Installed Energy Meter.
recording frequency	Data Type: Measured
	Recording frequency: Daily
Calculation method	Archiving method: Electronic
(if applicable)	Calculated by subtracting previous reading from present reading of energy meter reading.
	Net auxiliary consumption = Present Reading – Previous Reading
QA/QC	Energy meter shall be certified by third party as per national or IEC
procedures	standards and recalibrated at appropriate intervals according to manufacturer specifications, or at least once in three years;
Purpose of data	To evaluate net quantity of thermal energy delivered by the project.
Additional	Steam quantity data would be archiving electronically up to 2 years
comments	from the end of crediting period.

Data / Parameter:	B _{biomass,y}
Methodology	ACM0006
reference	
Data unit	Tonne/Year
Description	Quantity (dry basis) of biomass combusted in an year y
Measured/calculated	Measured
/default	

Data source	Onsite measurement
Value(s) of	Would be provided during verification
monitored parameter	
Measurement/	Mechanical Weigh Bridge
Monitoring	
equipment	
Measuring/reading/	Monitoring procedure: Continuous.
recording frequency	Data Type: Calculated
	Recording frequency: Daily / Monthly Average
	Archiving method: Electronic
Calculation method	Net biomass consumption can be calculated by subtracting closing stock
(if applicable)	of biomass from opening stock of biomass.
QA/QC procedures	Consumption of biomass can be cross checked by conducting energy
	balance.
Purpose of data	To cross check energy generation.
Additional	Data would be archiving electronically up to 2 years from the end of
comments	crediting period.

Data / Parameter:	Moisture Content
Methodology	ACM0006
reference	
Data unit	%
Description	Moisture content of the biomass (wet basis)
Measured/calculated	Measured
/default	
Data source	Test Report/ Plant Data
Value(s) of	Would be provided during verification
monitored parameter	
Measurement/	Weight Balance Machine
Monitoring	
equipment	
Measuring/reading/	Monitoring procedure: Measurement would be carried out for each
recording frequency	batch of purchased biomass.
	Data Type: Measured
	Archiving method: Electronic
Calculation method	Value can be obtained by testing the biomass sample in the in-house lab
(if applicable)	for each batch of biomass entered into the project boundary.
QA/QC procedures	N/A
Purpose of data	To cross check energy generation.
Additional	Data would be archiving electronically up to 2 years from the end of
comments	crediting period.